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Abstract—Polarization-adjusted convolutional (PAC) codes can
approach the normal approximation (NA) bound using Fano
decoding. However, when the received information is unreliable,
the decoding may linger over the decoding tree, resulting in both
a high decoding complexity and latency. This paper proposes the
modified PAC (MPAC) codes and their hybrid Fano-SC (HFSC)
decoding that prevents an impractical decoding. For the MPAC
codes, only a subset of the information bits undergo the convo-
lutional transform. Its output then concatenates the remaining
information bits for the inner polar transform. Consequently, the
Fano decoding and the successive cancellation (SC) decoding are
deployed to recover the information bits that have undergone
the convolutional transform and the remaining information bits,
respectively. Both the MPAC code design and the HFSC decoding
insight are studied. Our simulation results show that with a
limited complexity, HFSC decoding of MPAC codes can yield
a better performance-complexity tradeoff than Fano decoding of
PAC codes and SC list (SCL) decoding of cyclic redundancy check
(CRC)-polar codes.

Index Terms—Fano decoding, polarization-adjusted convolu-
tional codes, polar codes, performance-complexity tradeoff

I. INTRODUCTION

Polar codes [1] have been proved to achieve the capacity

of any binary input discrete memoryless channel (BI-DMC)

using the successive cancellation (SC) decoding. The decoding

complexity is O(N log2 N), where N is the codeword length.

However, the SC decoding performances of short-to-medium

length polar codes remain limited. This is primarily due to the

suboptimality of the SC decoding. By maintaining L instances

of the SC decoders, the SC list (SCL) decoding [2] can

approach the maximum likelihood (ML) decoding performance

with sufficiently large L and a complexity of O(LN log2 N).
Further improvement can be obtained by applying an outer

transform using the cyclic redundancy check (CRC) codes [3],

the parity check (PC) codes [4] or the convolutional codes [5].

Recently, the polarization-adjusted convolutional (PAC)

codes [6] that concatenate an outer rate-1 convolutional code

and an inner polar code were proposed. It has been shown

that with Fano decoding, a length-128 rate-1/2 PAC code

can approach the normal approximation (NA) bound. The

PAC codes are constructed by the Reed-Muller (RM) rate-

profile, which results in a limited rate choice. Several rate-

profile methods such as the Monte-Carlo, the RM-polar and

the weighted sum (WS) have been investigated in [7] and [8].

They provide a flexible rate choice. Meanwhile, construction

approaches of [9] and [10] can both reduce the number of min-

imum weight codewords of PAC codes, yielding an enhanced

decoding performance. However, the Fano decoding may linger

over the decoding tree without providing a complete codeword

estimation. This causes an infeasible decoding complexity and

hence latency, especially when the received information is

unreliable. To reduce the Fano decoding complexity, the path

metric functions with subchannel cutoff rates as bias and the

adaptive bias have been proposed in [11] and [12], respectively.

However, it is still challenging to apply Fano decoding for PAC

codes of length-512 or above.

This paper proposes the modified PAC (MPAC) codes in

order to enable a more practical decoding while maintaining a

high decoding performance. For the MPAC codes, a subset of

the information bits first undergo the outer convolutional trans-

form. Its output then concatenates the remaining information

bits for the inner polar transform. This can be realized by two

rate profilings. Consequently, the decoding can be realized by a

hybrid Fano-SC (HFSC) mechanism, namely HFSC decoding.

The convolutionally transformed information bits are recovered

by the Fano decoding, while the remaining information bits are

recovered by the SC decoding. This modified design of PAC

codes and their decoding can yield an improved performance-

complexity tradeoff performance. The MPAC code design and

the HFSC decoding insight are studied. Our simulation results

show that with a limited complexity, HFSC decoding of MPAC

codes delivers a better performance than Fano decoding of PAC

codes and SCL decoding of CRC-polar codes.

Notation: Given a set A ⊂ {1, . . . , N}, its cardinality and

complement are denoted by |A| and Ac, respectively. Let F2 =
{0, 1} denote the binary field. We use aN1 to denote a vector

(a1, a2, . . . , aN ). Given aN1 , we further use aji , where 1 ≤ i <
j ≤ N , to denote its subvector (ai, ai+1, . . . , aj). Given aN1
and A, we also use aA to denote a subvector (ai|i ∈ A).

II. PRELIMINARY

A. Polar Codes and SC Decoding

Polar codes are founded on channel polarization, which

consists of channel combining and splitting. Given a BI-DMC

W : X → Y , with an input alphabet X ∈ {0, 1} and an

arbitrary output alphabet Y ∈ R, channel combining first

combines N copies of independent channels W to produce

a vector channel WN : XN → YN , where N = 2n and

n ∈ N
+. Channel splitting further splits WN into a set of

N polarized subchannels W
(i)
N : X → YN × X i−1, where

1 ≤ i ≤ N . Let I(W) and I(W
(i)
N ) denote the symmetric

capacity of W and W
(i)
N , respectively. Channel polarization

results in W
(i)
N becoming either noiseless with I(W

(i)
N ) → 1,
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or heavily noisy with I(W
(i)
N ) → 0. The channel polarization

theorem [1] has shown that when N → ∞, the fraction of

noiseless subchannels converges to I(W).
The generator matrix of a length-N polar code is defined

as Gp = F⊗n, where F = ((1, 0), (1, 1))T ∈ F
2×2
2 is the

kernel matrix and ⊗ denotes the Kronecker product. The polar

codeword cN1 = (c1, c2, . . . , cN ) ∈ F
N
2 is generated by cN1 =

uN
1 Gp, where the information vector uN

1 ∈ F
N
2 is partitioned

by the information set A and the frozen set Ac, such that

uN
1 = (uA, uAc). In this paper, we set uAc = 0.

Assume that codeword cN1 is transmitted using BPSK

modulation. Let yN
1

= (y1, y2, . . . , yN ) ∈ R
N and ûN

1 =

(û1, û2, . . . , ûN ) ∈ F
N
2 denote the received symbol vector and

the estimated information vector, respectively. The estimation

of ûi is made based on the decision log-likelihood ratio (LLR)

L
(i)
N (yN

1
, ûi−1

1 ) = ln
P (yN

1
, ûi−1

1 | ûi = 0)

P (yN
1
, ûi−1

1 | ûi = 1)
, (1)

where P (yN
1
, ûi−1

1 | ûi) is the transition probability of W
(i)
N .

The above decision LLRs can be computed recursively via the

SC decoding trellis [1] [13]. Decision ûi can be made based

on the decision LLR of (1). That says for i ∈ A, ûi = 0 if

L
(i)
N (yN

1
, ûi−1

1 ) ≥ 0, or ûi = 1 otherwise. For i ∈ Ac, ûi = 0.

B. PAC Codes and Fano Decoding

Convolutional
Transform

Polar
Transform

Rate 
Profiling

Fig. 1. Block diagram of the PAC codes.

The PAC code concatenates an outer convolutional transform

with an inner polar transform, which is shown in Fig. 1. This

concatenation improves the weight distribution of the polar

code, yielding an improved decoding performance [14] [15].

Let mK
1 = (m1,m2, . . . ,mK) ∈ F

K
2 and sN1 =

(s1, s2, . . . , sN ) ∈ F
N
2 denote the information vector and the

input vector of the convolutional transform, respectively. To

encoder an (N,K) PAC code, mK
1 will be first embedded into

sN1 based on the information set A ⊂ {1, 2, . . . , N}, where

|A| = K, such that sA = mK
1 and sAc = 0. This is the rate

profiling for PAC codes. Let g(x) = g0 + g1x + · · · + gmxm

denote the generator polynomial of the convolutional trans-

form. Its generator matrix can be written as an upper-triangular

Toeplitz matrix Gc ∈ F
N×N
2 . Subsequently, the convolutional

transform output uN
1 is generated by uN

1 = sN1 Gc. The PAC

codeword cN1 is further generated by cN1 = uN
1 Gp.

Let ûN
1 ∈ F

N
2 denote the estimated input of the polar

transform. Presenting the SC decoding over the binary de-

coding tree, the Fano decoding improves the error-correction

capability by moving backwards and forwards to pursue a more

likely decoding path, as illustrated by Fig. 2. This requires the

assistance of a new path metric which can be computed layer-

by-layer as [11]

M(ûi
1) = M(ûi−1

1 ) + 1.0 + log2 P (ûi | yN1 , ûi−1
1 )

− E0(1,W
(i)
N ),

(2)

where P (ûi | yN1 , ûi−1
1 ) and E0(1,W

(i)
N ) are the a posteriori

probability of ûi and the cutoff rate of subchannel W
(i)
N ,

respectively. The path metric is initialized as M (
û0
1

)
= 0.

M(ûi
1) and M(ûi−1

1 ) are the path metrics of the nodes at

layers i and i−1 of the tree, respectively. Furthermore, M(ûi
1)

can be computed by updating the current node of M(ûi−1
1 )

through exploring the branches that correspond to ûi = 0
and ûi = 1, respectively. We further let {M(ûi

1)}max and

{M(ûi
1)}min denote the larger and smaller M(ûi

1) realiza-

tions, respectively. Their corresponding decoding paths are

denoted by {ûi
1}max and {ûi

1}min. Note that a larger M(ûi
1)

indicates a more reliable path for ûi
1.

-1.5

-5.5

-3.5 -2.9

-7.2-16.3 -3.3

-6.5 -3.5

0
Visited node
Non-visited node

0
1

Non visited node
, , Decoding order

Fig. 2. Fano decoding binary tree with T = 0 and Δ = 4 for a polar code
with N = 4, A = {2, 3, 4} and u4

1 = (0, 0, 1, 1).

Fig. 2 demonstrates the Fano decoding of a polar code with

a threshold T = 0 and a step size Δ = 4. Note that at current

node ûi, the Fano decoding compares M(ûi
1) with T in order

to decide whether to move forward or backward as follows:
1) If {M(ûi

1)}max ≥ T , move forward to {ûi
1}max;

2) If {M(ûi
1)}max < T , move backward to the root node of

the tree, or the node ûi′ which satisfies i′ ≤ i, {M(ûi′
1 )}min >

T and the path {ûi′
1 }min has not been visited.

Note that T is dynamically adjusted by Δ [16] , so that a

root-to-leaf complete path can be found. A node explored in

the above procedure is called a node visit of Fano decoding.
In decoding a PAC code, the Fano decoding is integrated

with the trellis constraint of the convolutional transform. Let Si

denote the state of the convolutional transform shift registers

with an input of si1. S0 is initialized to be all zero. With

the state Si−1 and an input si, the generation of output ui

is denoted by si 	−→
Si−1

ui. Moreover, state Si−1 is updated to

Si. Assuming that ûi (i ∈ A) has been estimated by Fano

decoding, the information bit ŝi that satisfies the mapping
ŝi 	−→Si−1

ûi (3)

can be obtained. Meanwhile, for the frozen bit ŝi where i ∈
Ac, set ŝi = 0 and obtain ûi by mapping 0 	−→

Si−1
ûi. Once

the decoding reaches a leaf node of the tree, the complete

estimation of ûN
1 and ŝN1 have been obtained.

It should be pointed out that, when the received information

is unreliable, the path metrics decrease, leading to excessive

backward and threshold-adjusting operations. This makes the

Fano decoding linger over the decoding tree, causing an

infeasible complexity and latency. It prevents Fano decoding

to be applied for larger PAC codes. To overcome this, the

following MPAC codes and their HFSC decoding are proposed.
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III. THE MPAC CODES

A. Encoding

For the MPAC codes, only a subset of the information bits

undergo the convolutional transform. Its output together with

the remaining information bits then undergo the inner polar

transform. The Fano decoding and SC decoding will recover

the information bits that have undergone the convolutional

transform and those that have not, respectively. They constitute

the HFSC decoding. It limits the number of nodes that allow

backward computation, reducing the decoding complexity.

Convolutional
Transform

Rate 
Profiling Ⅱ

Polar
Transform

Remaining information bits:

Rate 
Profiling Ⅰ

Fig. 3. Block diagram of the MPAC codes.

Fig. 3 shows the block diagram of the MPAC codes. For

an (N,K) MPAC code, it can be further specified by the

parameters (Nc,Kc), where Nc is the dimension of the convo-

lutional transform as G′
c ∈ F

Nc×Nc
2 and Kc is the number of

information bits that undergo the transform, respectively. They

satisfy K−Kc+Nc ≤ N . Hence, an (N,K) PAC code can be

viewed as a special MPAC code with Nc = N and Kc = K.

To encode an (N,K)-(Nc,Kc) MPAC code, the information

vector mK
1 is partitioned into mK

1 = (mKc
1 ,mK

Kc+1), where

mKc
1 and mK

Kc+1 denote the information bits that will undergo

the convolutional transform and the remaining information bits,

respectively. Two rate profilings are needed for the MPAC

code. Rate profiling I specifies an index set C, and |C| = Kc.

Information bits of mKc
1 will be embedded into the input

vector of the convolutional transform by m′Nc

1 = (m′
C ,m

′
Cc),

where m′
C = mKc

1 and m′
Cc = 0. The convolutionally

transformed vector is further generated by vNc
1 = m′Nc

1 G′
c,

where vNc
1 = (v1, v2, . . . , vNc) ∈ F

Nc
2 . The vector vNc

1

and information mK
Kc+1 are transmitted through the polarized

subchannels, which will be specified by rate profiling II. Let

P and A denote the index sets of rate profiling II, where

|P| = Nc and |A| = K−Kc+Nc. The input vector uN
1 of the

inner polar transform are partitioned into (uP , uA\P , uAc),

where uP = vNc
1 , uA\P = mK

Kc+1 and uAc = 0 are the

convolutionally transformed bits, the remaining information

bits and the frozen bits, respectively. Finally, the MPAC

codeword is generated by cN1 = uN
1 Gp. It can be seen that

the index sets A, P and C determine the design of the MPAC

codes, which will be introduced in the following subsection.

B. Code Design

Fig. 4 shows the index sets of the two rate profilings. In

particular, for the most reliable subchannels with I(W
(i)
N ) → 1,

they are used to transmit the information bits of mK
Kc+1. These

subchannels are indexed by A\P . The less reliable subchan-

nels indexed by P are used to transmit the convolutionally

transformed bits of vNc
1 . Rate profiling I, which is specified

by C, is further designed to provide a good weight distribution

for the MPAC codes. To realize this design idea, the Gaussian

approximation (GA) [17] and an improved RM-polar (iRMP)

ordering that evolves from the RM-polar rule [18] are needed.

mproved
RM-polar

GA

Ascending iRMP order

Ascending GA order 

Fig. 4. Index sets of the MPAC codes.

Let L(W(i)
N ) denote the mean LLR value of W

(i)
N , which is

estimated by GA. Note that the GA is conducted under all-zero

codeword assumption. The W
(i)
N with a larger L(W(i)

N ) has a

higher reliability and vice versa. Hence, subchannels can be or-

dered by their reliabilities. Given subchannel indices i1 and i2,

the GA ordered pair (i1, i2)GA denotes L(W(i1)
N ) > L(W(i2)

N ).
Let r(i) = b(i − 1), where b(i − 1) is the number of 1s

in the binary representation of i − 1 and 1 ≤ i ≤ N . The

iRMP ordered pair (i1, i2)iRMP is further defined as follows.

Given indices i1 and i2, it is claimed that (i1, i2)iRMP, if

r(i1) > r(i2), or r(i1) = r(i2) and (i1, i2)GA. Note that the

iRMP ordering can provide a better weight distribution than

the RM-polar ordering for the MPAC codes.

Under the GA order, a refreshed subchannel index tuple

(j1, j2, . . . , jN )GA can be obtained, which implies

L(W(j1)
N ) > L(W(j2)

N ) > · · · > L(W(jN )
N ). (4)

Let A denote the index set of the K −Kc +Nc most reliable

subchannels, where

A = {j1, j2, . . . , jK−Kc+Nc
} (5)

is used in rate profiling II. This is similar to the GA rate-profile

in polar coding, except that |A| = K −Kc +Nc. Let

P = {jK−Kc+1, jK−Kc+2, . . . , jK−Kc+Nc} ⊂ A, (6)

denote the index set of the Nc least reliable subchannels in

A. Furthermore, the iRMP order is used to reorganize set P ,

yielding an Nc-tuple (j[1], j[2], . . . , j[Nc])iRMP, such that

(j[1], j[2])iRMP, (j[2], j[3])iRMP, · · · , (j[Nc−1], j[Nc])iRMP (7)

and the [ · ] is a mapping {1, . . . , Nc} → {K−Kc+1, . . . ,K−
Kc +Nc}. For the iRMP ordering, let

B = {j[1], j[2], . . . , j[Kc]} ⊂ P (8)

denote the index set of the information bits that undergo the

convolutional transform, where |B| = Kc.

Index set C characterizes the rate profiling I for the infor-

mation bits mKc
1 . In order to construct C, elements of P and

B need to be sorted in an ascending order, yielding vectors
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pNc

1
= (p1, p2, . . . , pNc

) and bKc
1 = (b1, b2, . . . , bKc

), respec-

tively, where p1 < p2 < · · · < pNc and b1 < b2 < · · · < bKc .

The index set C can be further constructed as

C = {k | pk = bi, i ∈ {1, . . . ,Kc}}, (9)

where |C| = Kc. Furthermore, the mapping fB is defined as

B = {bi : 1 ≤ i ≤ Kc} → {1, . . . ,Kc}. For bi ∈ B, we have

fB(bi) = i ∈ {1, . . . ,Kc}, which will be used to determine the

indices of mKc
1 in the HFSC decoding. Note that all the above

mentioned index sets and mapping functions are computed off-

line for a specific (N,K)-(Nc,Kc) MPAC code.

Example 1. Given an (8, 5)-(4, 2) MPAC code, the index

sets are determined as below. Table I lists the mean LLR

values L(W(i)
N ) of the subchannels and their r(i) values. An

8-tuple (8, 7, 6, 4, 5, 3, 2, 1)GA can be obtained. The index set

of the 7 most reliable subchannels is A = {8, 7, 6, 4, 5, 3, 2},

among which the 4 least reliable subchannels are indexed by

P = {4, 5, 3, 2}. Further, we have the 4-tuple (4, 5, 3, 2)iRMP,

where (4, 5)iRMP, (5, 3)iRMP, (3, 2)iRMP. The index set

B = {4, 5} can be further obtained. Sorting the elements of

P and B, we have p4
1
= (p1, p2, p3, p4) = (2, 3, 4, 5) and

b21 = (b1, b2) = (4, 5). Hence, index set C = {3, 4}. Finally,

with mapping fB, we have fB(4) = 1 and fB(5) = 2.

TABLE I
L(W(i)

N ) AND r(i) OF THE SUBCHANNEL INDEX i

index i 1 2 3 4 5 6 7 8

L(W(i)
N ) 0.29 2.01 2.74 9.13 3.79 11.57 13.51 32.00

r(i) 0 1 1 2 1 2 2 3

IV. THE HFSC DECODING

A. Decoding Mechanism

SC
Decoder

Message
Extraction

Fano
Decoder

Fig. 5. Block diagram of the HFSC decoding.

Fig. 5 shows the block diagram of the HFSC decoding.

It deploys the SC decoding to recover the information bits

of mK
Kc+1 that are transmitted through the most reliable

subchannels indexed by A\P . The Fano decoding will only

be deployed to recover the information bits of mKc
1 that have

undergone the convolutional transform. The convolutionally

transformed bits of vNc
1 are transmitted through the less reliable

subchannels indexed by P . During the HFSC decoding, the

decision LLRs are computed by the SC decoder. In order to

estimate m̂Kc
1 , the Fano decoder requests the SC decoder for

the decision LLRs L
(i)
N (yN

1
, ûi−1

1 ) and estimates ûi′ , where

i′ ≤ i. If i′ ∈ B, bit m̂j can be obtained, where j = fB(i′).
Note that the estimated ûi′ will be fed back to the SC decoder.

Meanwhile, the information bits of m̂K
Kc+1 are determined

based on their decision LLRs L
(i)
N (yN

1
, ûi−1

1 ). Once the last

bit ûN is estimated, information vector m̂K
1 has been obtained.

Algorithm 1 summarizes the HFSC decoding.

Algorithm 1 The Hybrid Fano-SC Decoding

Input: yN
1

, A, P , B;

Output: m̂K
1 ;

1: Initialize j = 1 and i = 1;

2: While i 
= N + 1
3: Compute decision LLR L

(i)
N (yN

1
, ûi−1

1 ) as in (1);

4: If i ∈ P
5: Compute path metric M(ûi

1) as in (2);

6: Perform a node visit of Fano decoding;

7: Estimate ûi′ with i′ ≤ i and let i = i′ + 1;

8: If i′ ∈ B
9: Let j = fB(i′) and determine m̂j as in (3);

10: Else
11: Estimate ûi with i ∈ A based on L

(i)
N (yN

1
, ûi−1

1 );

12: Compute M(ûi
1) as in (2) and let i = i+ 1;

13: Retrieve m̂K
1 from m̂Kc

1 and ûN
1 , and terminate decoding.

Note that a computation threshold can also be applied for

the HFSC decoding to bound the decoding latency, which will

be introduced in the Section V.

B. Decoding Insight

Let Rc = Kc

Nc
denote the information rate of the convolu-

tional transform. We consider the MPAC codes with the con-

volutional generator polynomial g(x) = 1+x2+x3+x5+x6.

They are designed by the GA at the signal-to-noise ratio (SNR)

of 0 dB. Fig. 6 shows how the HFSC decoding FER is affected

by Kc and Rc. They are rate-1/2 MPAC codes with length

N = 128, and Kc = 16, 32 and 48, respectively. The results

are obtained over the additive white Gaussian noise (AWGN)

channel with a SNR of 3.5 dB. It can be seen that the perfor-

mance of an MPAC code can be improved by increasing Kc.

Note that the polar coding can be seen as the codewords are

generated through the linear combination of the rows in Gp.

It has been shown that the convolutional transform results in

rows in Gp being included in the minimum weight codewords

that generated by polar coding [14] [15]. This inclusion leads

to more codewords with large weights, yielding a better weight

distribution for the code. In MPAC codes, the number of rows

in Gp that may be included is Nc−Kc = Kc(
1
Rc

−1). Given an

Rc, Nc−Kc increases with Kc, which leads to more inclusion

of rows in Gp. In this way, a larger Kc can result in a better

weight distribution for the MPAC codes. Meanwhile, a larger

Kc also results in fewer information bits being transmitted

through the unreliable subchannels, yielding a better HFSC

decoding performance. Empirically, it can be seen that the Rc

interval of (0.45, 0.55) can yield a relatively good decoding

FER performance, especially when Kc = 16. This is due to

the fact that when Rc is small, more frozen bits are embedded

between the information bits in rate profiling I. It may result

in blocks of 0s in m′Nc

1 and hence the unequal error protection

of the convolutional transform [14]. When Rc is large, which
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means Nc − Kc → 0, the inclusion of rows is less likely to

occur. They both weaken the weight distribution improvement

brought by the convolutional transform, resulting in a loss in

the decoding FER performance.

0.250 0.375 0.500 0.625 0.750
10

10

10

10

FE
R

Fig. 6. FER performance of the MPAC codes with different values of Kc

and Rc , where N = 128 and K = 64.

V. SIMULATION RESULTS

Our simulation results on decoding and complexity perfor-

mances are obtained over the AWGN channel using BPSK. The

MPAC codes with HFSC decoding are compared with relevant

coding schemes, including PAC codes with the Fano decoding,

CRC-polar codes with the SCL decoding and polar codes

with the SC decoding. The MPAC codes with the generator

polynomial of g(x) = 1+x2+x3+x5+x6 are designed using

GA at the SNR of 0 dB. Based on the above decoding insight,

we choose Rc = 0.5. Both the CRC-polar codes and the polar

codes are designed by the reliability sequence in 5G standard

[19]. The CRC generator polynomial is gc(x) = 1+x+x2+x8.

The PAC codes are constructed by the RM rate-profile. Both

the HFSC decoding and Fano decoding have Δ = 2 which is

chosen out of the performance-complexity tradeoff.

The decoding complexity is measured as the average number

of LLR computations in decoding a codeword. A decoding

LLR computation threshold Φ will be introduced to bound the

decoding complexity and latency. It is defined as a multiplicity

of the SC decoding complexity, i.e., Φ = ηN log2 N , where

η ∈ N
+. For both the HFSC decoding and Fano decoding,

once the decoding complexity reaches Φ, the SC decoding

will be employed to obtain a complete codeword estimation.

This prevents the decoding from lingering over the decoding

tree. Note that the complexity of all the decoding algorithms

are normalized by N log2 N , namely normalized complexity.

Fig. 7 shows the decoding FER and complexity perfor-

mances of different coding schemes with N = 128 and

K = 64. Given N and K, the MPAC-(Nc,Kc) code refers

to the (N,K)-(Nc,Kc) MPAC code. A decoding computation

threshold of η = 128 is applied. It can be seen that as Kc

increases, the FER performances of the MPAC codes improve,

which also incurs a slightly increased decoding complexity.

In particular, the MPAC-(96, 48) code can slightly outperform

the (128, 64) PAC code with a reduced complexity. When

Kc reaches K, the MPAC code evolves into the PAC code.

However, with a computation threshold, the MPAC code would

be more likely to recover the correct information. Furthermore,

when compared with the CRC-polar code, the MPAC-(96, 48)
code yields 0.25 dB coding gain at the FER of 10−4 with a

far small decoding complexity.

Fig. 8 shows the decoding FER and complexity perfor-

mances of different coding schemes with N = 512 and

K = 256. A decoding computation threshold of η = 1024
is applied. It can be seen that the MPAC-(128, 64) code

yields 0.7 dB coding gain over the (512, 256) PAC code at

the FER of 10−4, but with a significantly reduced complex-

ity. This again demonstrates that the proposed MPAC codes

and the HFSC decoding can achieve a better performance-

complexity tradeoff, especially for larger codes. Furthermore,

the MPAC-(128, 64) code yields a similar performance as

the SCL decoding of the CRC-polar code with L = 8. Its

HFSC decoding complexity starts to show advantage at the

SNR of 2.25 dB. The MPAC-(128, 64) code also substantially

outperforms the polar code under the SC decoding with a

converging normalized complexity of 1.
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Fig. 7. Performance comparison of codes with N = 128 and K = 64.

1 2 3 4
10

10

10

10

10

10

100

FE
R

SNR (dB)
polar, SC PAC, Fano
CRC-polar, SCL MPAC-(128, 64), HFSC
CRC-polar, SCL

2.0 2.5 3.0 3.5 4.0
0

5

10

15

20

N
or
m
al
iz
ed
C
om
pl
ex
ity

SNR (dB)

Fig. 8. Performance comparison of codes with N = 512 and K = 256.
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